Introductio 000000	n Methods 0000	Results 00000000000000	Conclusion 000	Appendix O
	Assessing the C	onsequences o	f Declining	
	Unionization and	Public-Sector	Employment:	
	A Density-Functic	on Decomposit	ion of Rising	
	Inequality	from 1983 to	2005	

Changhwan Kim and Arthur Sakamoto

University of Minnesota University of Texas

Aug 13, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Introduction	Methods	Conclusion	Appendix
•00000			

Inequality on the rise

Introduction	Methods	Results	Conclusion	Appendix
00000	0000	00000000000000	000	O
1990's Cor	nsensus			

- Skill-Biased Technological Change and Ubiquitous Inequality Increases, "1990's Consensus"
- JMP (1993): within-group wage dispersions were growing in all groups due to the repercussions generated by the increased demand for skilled workers
- Education is just one indicator of various skills.
- Due to the increased demand for high-skilled workers, the economic returns to diverse skills such as advanced work skills, ability, education, and cognitive capacities have increased.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Not So Ubiquitous Inequality Increases

- Piketty and Saez (2003): most inequality growth is due to the change at the very top and the fluctuation of wage inequality is mainly implemented by the changes of tax rates
- Autor et al. (2006): the residual inequality at the top end has grown, but the residual inequality at the low end has been actually reduced
- Lemieux (2006): within-group inequalities grew substantially among college-educated workers but changed little for most other groups.

• Kalleberg and Mouw (2006): Inequality at the lower end actually declines (p50/p10 decreases)

Introduction	Methods	Conclusion	Appendix
000000			

Organizational Restructuring/Workplace Power Changes

- Labor market changes derived from conflict over control of the production process and over the distribution of the economic surplus (Granovetter and Tilly 1988).
- The rise of the New Economy which at least partially reflect power differentials between social groups or individuals (Hirsch and Soucey 2006).
- Nelson (2001): New industrial relations (Value commitment and value consensus, not conflict and coercion). New Economy strengthens the persuasive power for managerial sides and weakens it for union sides.
- Privatization: Privatization changes organizational power relations as well as it increase the share of private sector. (Megginson and Netter 2001)

Introduction	Methods	Conclusion	Appendix
000000			

Labor Market Sectors

	Private	Public
Non-union	I	II
	Most competitive	Somewhat competitive
Union	III	IV
	Somewhat protective	Most protective

- A. Sensitivity to labor supply and demand: $\ \ I>II>II>III>IV$
- B. Workers' negotiation power:
- C. Mean log wage:
- D. Log wage dispersion:

 $\begin{array}{l} 1 > 11 > 11 > 111 > 1V \\ 1 < 11 < 111 < 1V \\ 1 < 11 < 111 < 1V \\ 1 > 11 > 111 > 1V \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Introduction	Methods	Results	Conclusion	Appendix
00000●	0000	00000000000000	000	O
Hypothesis				

• Our theoretical concern is to access the relative significance of organizational power versus skill-biased technological change as contrasting explanations of rising inequality.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Introduction	Methods	Results	Conclusion	Appendix
00000●	0000	00000000000000	000	O
Hypothesis				

- Our theoretical concern is to access the relative significance of organizational power versus skill-biased technological change as contrasting explanations of rising inequality.
- (1) Compositional changes; (2) Group-specific mean changes;
 (3) Group-specific variance changes

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Methods	Results	Conclusion	Appendix
00000●	0000	00000000000000	000	O
Hypothesis				

- Our theoretical concern is to access the relative significance of organizational power versus skill-biased technological change as contrasting explanations of rising inequality.
- (1) Compositional changes; (2) Group-specific mean changes;
 (3) Group-specific variance changes
- Compositional Changes
 - SBTC: *Ceteris paribus*, the change of educational composition will explain the rise of inequality substantially.
 - Organizational power change views: The change of sectoral composition will account for a sizeable portion of inequality change

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Methods	Results	Conclusion	Appendix
00000●	0000	00000000000000	000	O
Hypothesis				

- Our theoretical concern is to access the relative significance of organizational power versus skill-biased technological change as contrasting explanations of rising inequality.
- (1) Compositional changes; (2) Group-specific mean changes;
 (3) Group-specific variance changes
- Compositional Changes
 - SBTC: *Ceteris paribus*, the change of educational composition will explain the rise of inequality substantially.
 - Organizational power change views: The change of sectoral composition will account for a sizeable portion of inequality change

- Group-specific mean and variance changes
 - SBTC: I > II > III > IV
 - $\bullet\,$ Organizational power change views: I < II < III < IV

Methods	Conclusion	Appendix
● 000		

A Semiparametric Approach

DFL (1996, Econometrica) Methods

Jenkins, Stephen P. and Philippe Van Kerm. 2005. "Accounting for Income Distribution Trends: A Density Function Decomposition Approach." *Journal of Economic Inequality* 3: 43-61.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Methods	Results	Conclusion	Appendix
000000	○●○○	00000000000000	000	0

Kernel Density Decomposition

$$f(x) = \sum_{s=1}^{4} \sum_{k=1}^{4} v^{sk} f^{sk}(x)$$
(1)

where v^{sk} =population share, f^{sk} =PDF

$$\Delta f(x) = C_{D^{sk}}(x) + C_{P^s}(x) + C_{P^k}(x)$$
(2)

$$\Delta f(x) = (C_{D_1^{sk}}(x) + C_{D_2^{sk}}(x) + C_{D_3^{sk}}(x)) + C_{P^s}(x) + C_{P^k}(x) \quad (3)$$

where $C_{P^s}(x)$: changes in shares of sectors; $C_{P^k}(x)$: changes in shares by skill groups $C_{D_1^{sk}}(x)$: mean change in sector *s* and education *k*; $C_{D_2^{sk}}(x)$: variance change in sector *s* and education *k*; $C_{D_3^{sk}}(x)$: residual effects in sector *s* and education *k*

(日)、(型)、(E)、(E)、(E)、(O)への

	Methods		Conclusion	Appendix
000000	0000	00000000000000	000	0

Kernel Density Decomposition

$$cf(x) = \sum_{s=1}^{4} \sum_{k=1}^{4} v^{s(t)k(t)} cf_d^{sk(1)}(x)$$
(4)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

where $cf_d^{sk(1)}(x)$ is the counterfactual density for educational group k in sector s at time 1 (2001-02) when the PDF of that group changes only for d

4 Sectors \times 4 Educational Groups = 16 Cells

Introduction	Methods	Results	Conclusion	Appendix
000000	○○○●	000000000000000000000000000000000000	000	O
Data				

- Current Population Survey Outgoing Rotation Group (CPS-ORG), 1983-2005
- Aged 18-65
- Wage workers only
- Inflation adjusted by CPI-X
- Trim less than 1 dollar an hour (in 1993-94 fixed dollar)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Top-coding adjustment by log-normal distribution
- Base period: 1983-84, End period: 2001-02

	Methods	Results	Conclusion	Appendix
000000	0000	•000000000000	000	0

Proportion of Workforce by Sector

	Male			Female		
	t0	t1	Δ	t0	t1	Δ
I.Prv-NonU	.637	.750	.113	.701	.746	.045
II.Pub-NonU	.090	.082	008	.120	.118	002
III.Prv-Union	.195	.108	087	.090	.054	036
IV.Pub-Union	.078	.062	016	.089	.082	007

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- Education: Decrease of LTHS, HSG; Increase of SC, BA+
- Mean Log Wage: I < II < III < IV
- Standard Deviation: I > II > III > IV

	Methods	Results	Conclusion	Appendix
000000	0000	0000000000000	000	0

Standard Deviation of Log Wage: Inequality Change

	Male			Female		
	t0	t1	Δ	t0	t1	Δ
I.Prv-NonU	.589	.608	.019	.476	.554	.078
II.Pub-NonU	.573	.580	.007	.463	.530	.067
III.Prv-Union	.409	.462	.053	.421	.499	.078
IV.Pub-Union	.389	.450	.061	.405	.465	.060

• Contrary to the SBTC views, Sector III & IV show bigger increases of inequality over this time period among male workers.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• Consistent with the organizational power change views.

	Methods	Results	Conclusion	Appendix
000000	0000	0000000000000	000	0

Standard Deviation of Log Wage: Inequality Change

	Male			Female		
	t0	t1	Δ	t0	t1	Δ
Less Than High Sch	.489	.409	080	.395	.363	032
High School Grad	.492	.470	022	.425	.441	.016
Some College	.547	.524	023	.467	.492	.025
BA or More	.552	.590	.038	.483	.541	.058

• Again contrary to the SBTC views, inequality decreases among less educated male workers.

 Introduction
 Methods
 Results
 Conclusion
 Appendix

 000000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <

Kernel Density Estimate: Male

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 Introduction
 Methods
 Results
 Conclusion
 Appendix

 000000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Kernel Density Estimate: Female

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	00000●00000000	000	0

Kernel Density Estimate: Male by Education

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト 一 臣 … の Q ()・

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	000000●0000000	000	0

Kernel Density Estimate: Female by Education

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト ● 臣 - の Q ()~.

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	0000000●000000	000	0

Wage Ratio btw Skilled and Unskilled, 1983-2005

		A. Male				
	<u>Private</u>	<u>Public</u>	<u>Private</u>	<u>Public</u>		
	W_{BA+}	W _{LTHS}	W_{BA+A}	/W _{HSG}		
Non-union	+(.0053)	+(.0068)	+(.0018)	+(.0029)		
Union	+(.0090)	+(.0082)	+(.0033)	+(.0031)		
		B. F	emale			
	<u>Private</u>	<u>Public</u>	<u>Private</u>	<u>Public</u>		
	W_{BA+}	W _{LTHS}	W_{BA+A}	/W _{HSG}		
Non-union	+(.0085)	+(.0089)	+(.0043)	+(.0035)		
Union	+(.0111)	+(.0077)	+(.0068)	+(.0030)		
$\ln(W_{ba+})$ $h(VEAP) + c$						

$$\frac{\ln(VV_{ba+})}{\ln(W_{lths})} = a + b(YEAR) + e$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ == ∽へ⊙

Methods	Results	Conclusion	Appendix
	00000000000000		

Standard Deviation of Log Wage, 1983-2005: Male

	Private	Public	Private	Public
	Less Than High Sch		High Sc	h Grad.
Non-union	-(.0040)	-(.0041)	-(.0018)	-(.0010)
Union	+(.0017)	+(.0026)	+(.0021)	+(.0027)
	Some Col		BA	\ +
Non-union	-(.0026)	-(.0031)	△(0002)	△(.0002)
Union	+(.0006)	+(.0036)	+(.0032)	+(.0033)

sd(LogWage) = a + b(YEAR) + e

(日) (日) (日) (日) (日) (日) (日) (日) (日)

-: significantly negative; +: significantly positive; \triangle : not significant at α =.05

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	00000000000000000000	000	0

Standard Deviation of Log Wage, 1983-2005: Female

	Private	Public	Private	Public
	Less Than High Sch		High Sc	ch Grad.
Non-union	-(.0022)	-(.0015)	-(.0007)	-(.0022)
Union	△(0006)	△(.0019)	△(.0002)	+(.0018)
Some Col		BA	4+	
Non-union	-(.0010)	riangle(.0006)	+(.0022)	+(.0030)
Union	+(.0017)	+(.0019)	+(.0035)	+(.0031)

sd(ln(WAGE)) = a + b(YEAR) + e

(日) (日) (日) (日) (日) (日) (日) (日) (日)

-: significantly negative; +: significantly positive; \triangle : not significant at α =.05

Changes of Mean Log Wage Differences

$$DW_{ijkt} = \ln(W_{male,private-nonunion,kt}) - \ln(W_{ijkt})$$

where k=education, t=time; lowess graph

æ

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	000000000000000000000000000000000000	000	O

Changes of Standard Deviation Differences

 $Dsd_{ijkt} = sd[ln(W_{male,private-nonunion,kt})] - sd[ln(W_{ijkt})]$ where k=education, t=time; lowess graph

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	000000000000000000000000000000000000	000	O

Decomposition, 1983-84 to 2001-02; Male

	Theil	Δ	%
A. Actual Change			
1983-84	.1555		
2001-02	.1925	.0370	1.000
B. Marginal Contribution by Compone	nt		
Sector Composition	.1657	.0102	.275
Education Composition	.1564	.0010	.026
Mean	.1721	.0166	.449
Variance	.1548	0006	017
(Total)	.1823	.0268	.724
Residual	.1657	.0202	.276
C. Marginal Contribution of Mean and	Variand	e Changes	s by Sector
I.Private-Nonunion	.1642	0087	.235
II.Public-Nonunion	.1548	0007	018
III.Private-Union	.1596	.0041	.111
IV. Public-Union	.1579	.0024	.066

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	0000000000000000	000	0

Decomposition, 1983-84 to 2001-02; Female

	Theil	Δ	%
A. Actual Change			
1983-84	.1303		
2001-02	.1775	.0471	1.000
B. Marginal Contribution by Component	nt		
Sector Composition	.1348	.0045	.096
Education Composition	.1317	.0014	.029
Mean	.1495	.0192	.407
Variance	.1449	.0146	.310
(Total)	.1736	.0433	.919
Residual	.1341	.0038	.081
C. Marginal Contribution of Mean and	Varianc	e Change	s by Sector
I.Private-Nonunion	.1560	.0257	.545
II.Public-Nonunion	.1356	.0053	.113
III.Private-Union	.1344	.0041	.087
IV. Public-Union	.1360	.0057	.121

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	00000000000000	●00	O
Conclusion				

- The two largest sources of the rising inequality
 - the shrinkage in the sizes of the institutionally protected market sectors (i.e., compositional changes)
 - the "nonunion private-sectorization" of all sectors (i.e., mean and variance changes).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	00000000000000	●00	O
Conclusion				

- The two largest sources of the rising inequality
 - the shrinkage in the sizes of the institutionally protected market sectors (i.e., compositional changes)
 - the "nonunion private-sectorization" of all sectors (i.e., mean and variance changes).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- Contrary to the expectation of the SBTC view, changes inside the most competitive sector do not explain the majority of inequality change.
 - Size: Sector I vs Sector III
 - = .637 vs .195 (1983) .710 vs .108 (2002)
 - Inequality: .235 vs. .111

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	00000000000000	●00	O
Conclusion				

- The two largest sources of the rising inequality
 - the shrinkage in the sizes of the institutionally protected market sectors (i.e., compositional changes)
 - the "nonunion private-sectorization" of all sectors (i.e., mean and variance changes).
- Contrary to the expectation of the SBTC view, changes inside the most competitive sector do not explain the majority of inequality change.
 - Size: Sector I vs Sector III
 - = .637 vs .195 (1983) .710 vs .108 (2002)
 - Inequality: .235 vs. .111
- Weak Version of the SBTC (Lemieux 2006)
 - the compositional growth of groups in which within-group inequalities are initially higher.
 - the growth of inequality in groups where mean wages also rise.
 - \Rightarrow But once we control for sectoral composition, the change of educational composition does not raise inequality.

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	00000000000000	○●○	O
Conclusion				

• Berg and Kalleberg's (2001): the most critical change is "the return to 'private' sector markets of the types last seen in the 1930s (p.3)," that is, "the transition, in the American economy's core, from nonprice to price competition (p.3)."

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	00000000000000	○●○	O
Conclusion				

- Berg and Kalleberg's (2001): the most critical change is "the return to 'private' sector markets of the types last seen in the 1930s (p.3)," that is, "the transition, in the American economy's core, from nonprice to price competition (p.3)."
- Union effect: Not just a function of % unionized. Not only are unions losing their portion in the total workforce, but they are also loosing their power as universal wage setters in organizations (Mitchell 1985).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Methods	Results	Conclusion	Appendix
000000	0000	00000000000000	○●○	O
Conclusion				

- Berg and Kalleberg's (2001): the most critical change is "the return to 'private' sector markets of the types last seen in the 1930s (p.3)," that is, "the transition, in the American economy's core, from nonprice to price competition (p.3)."
- Union effect: Not just a function of % unionized. Not only are unions losing their portion in the total workforce, but they are also loosing their power as universal wage setters in organizations (Mitchell 1985).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• Integration of theories of rising wage inequality and diminishing gender gap.

	Methods		Conclusion	Appendix
000000	0000	00000000000000	000	0

Thank you!

Introduction	Methods	Results	Conclusion	Appendix		
If the relationship between time 0 and time 1 is linear:						
II the rela	nousing between		is inical.			

$$x_1 = \alpha^{sk} + \beta^{sk} x_0 \tag{5}$$

The resulting counterfactual PDF for group *sk* is therefore;

$$cf^{sk}(x) = \left| \frac{1}{\beta^{sk}} \right| f_0^{sk} \left(\frac{x - \alpha^{sk}}{\beta^{sk}} \right)$$
(6)

 $C_{D_1}^{sk}(x)$ is the contribution of the mean change only. If mean wage for group sk changes by sk, and other things remain constant at the figures at time 0, then the wage at time 1 will be:

$$x_1 = a^{sk} + x_0 \tag{7}$$

For $C_{D_2}^{sk}(x)$ which is the change of inequality due to the variance change, we can transform workers' wage with a transformation:

$$x_1 = (1-h)E(f_0^{sk}) + hx_0$$
(8)

where $E(f_0^{sk})$: expected wage at time 0 $h: \sqrt{var(f_1^{sk})/var(f_0^{sk})}$