Appendix A Variances of the Modified GMC Method

The variance-covariance matrix of the averaging method is discussed in detail by Yun
(2008). The same technique can be applied for the modified GMC method with slight
modification.

The variance-covariance matrix of the normalized regression coefficients is computed
as Xp = WX goW'’ where W is a weight matrix and X go is a reformatted variance-
covariance matrix of the original regression coefficients (¥ ). The weight matrix W for

the averaging method used in this study is defined as:
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where Mjyyj5 = Iyxg — (1/J)- 15x g in which J represents for the number of education
variables (i.e., four) and 0 and 1 are a matrix of zeros and a matrix of ones, respectively.
Ik« i refers to the K by K identity matrix for two age variables. L represents the number
of marriage variables (i.e., two).

The reformatted variance-covariance matrix of the regression coefficients (X pgo) is at-
tained by adding zero vectors to the variance-covariance matrix of the original regression

coefficients, as follows:
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where o2 is the residual variance and X is a partial covariance matrix. For example, b, .,
is a covariance matrix between education coefficients by and age coefficients by ; O refers
to a zero matrix.

For the modified GMC method, everything except the weighting matrix W* is the same

as the averaging method. The weighting matrix needs to be rebuilt as follows:
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where G1x refers to a 1 X J column vector of grand means for education variables and
G1xr refers to a 1 X L column vector of grand means for marriage variables. Njx.j
denotes Iy — 1yx g+ Djxj where D s refers to a diagonal matrix converted from the
column vector of the grand means of education.

The new coefficients for the modified GMC method, (B*) can be obtained by taking di-
agonal values of W* B. The variance-covariance matrix of the new coefficients is computed
as Xp= = W*X goW*'. The variance of any predicted value X B is estimated as X 2 X'
Likewise, the variance of X B* can be estimated as X X ;5. X"

Once the variance-covariance matrix of the coefficients of the modified GMC method
is computed, the standard errors for the detailed decomposition can be obtained relatively
easily. Using matrix notation, D1B in Equation 2 can be expressed as X BB*DI - The vari-
ance of X BB;"H p is therefore calculated by XX 4. X, where X4, is an addition of the
two variance-covariance matrices of coefficients, 25% + 25,;3. The variances of D2 are es-
timated in the same way. As we estimate the variances of the decomposed components, the
t-tests of the estimated decomposition components can be conducted simply; for example,
by tpip = %. Note that here we assume the X’s to be fixed. if X’s are stochastic, the
estimation of variances should include the variance of X and the interaction effects ( |Lin

2007 Jann|[2008).
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