Appendix A Variances of the Modified GMC Method

The variance-covariance matrix of the averaging method is discussed in detail by Yun (2008). The same technique can be applied for the modified GMC method with slight modification.

The variance-covariance matrix of the normalized regression coefficients is computed as $\boldsymbol{\Sigma}_{\boldsymbol{b}^{*}}=\boldsymbol{W} \boldsymbol{\Sigma}_{B^{0}} \boldsymbol{W}^{\prime}$ where \boldsymbol{W} is a weight matrix and $\boldsymbol{\Sigma}_{B^{0}}$ is a reformatted variancecovariance matrix of the original regression coefficients $\left(\boldsymbol{\Sigma}_{\boldsymbol{B}}\right)$. The weight matrix \boldsymbol{W} for the averaging method used in this study is defined as:

$$
W=\left[\begin{array}{cccc}
1 & (1 / J) \cdot 1_{1 \times J} & 0_{1 \times K} & (1 / L) \cdot 1_{1 \times L} \\
0_{J \times 1} & M_{J \times J} & 0_{J \times K} & 0_{J \times L} \\
0_{K \times 1} & 0_{K \times J} & I_{K \times K} & 0_{J \times L} \\
0_{L \times 1} & 0_{L \times J} & 0_{L \times K} & M_{L \times L}
\end{array}\right]
$$

where $M_{J \times J}=I_{J \times J}-(1 / J) \cdot 1_{J \times J}$ in which J represents for the number of education variables (i.e., four) and 0 and 1 are a matrix of zeros and a matrix of ones, respectively. $\boldsymbol{I}_{\boldsymbol{K} \times \boldsymbol{K}}$ refers to the \boldsymbol{K} by \boldsymbol{K} identity matrix for two age variables. \boldsymbol{L} represents the number of marriage variables (i.e., two).

The reformatted variance-covariance matrix of the regression coefficients $\left(\boldsymbol{\Sigma}_{B^{0}}\right)$ is attained by adding zero vectors to the variance-covariance matrix of the original regression coefficients, as follows:

$$
\Sigma_{B^{0}}=\left[\begin{array}{cccccc}
\sigma_{a}^{2} & 0 & \Sigma_{a, b_{J}^{\prime}} & \Sigma_{a, b_{K}^{\prime}} & 0 & \Sigma_{a, b_{L}^{\prime}} \\
0 & 0 & 0_{1 \times(J-1)} & 0_{1 \times(K-1)} & 0 & 0_{1 \times(L-1)} \\
\Sigma_{b_{J}, a} & 0_{(J-1) \times 1} & \Sigma_{b_{J}, b_{J}^{\prime}} & \Sigma_{b_{J}, b_{K}^{\prime}} & 0_{(J-1) \times 1} & \Sigma_{b_{J}, b_{L}^{\prime}} \\
\Sigma_{b_{K}, a} & 0_{(K-1) \times 1} & \Sigma_{b_{K}, b_{J}^{\prime}} & \Sigma_{b_{K}, b_{K}^{\prime}} & 0_{(K-1) \times 1} & \Sigma_{b_{K}, b_{L}^{\prime}} \\
0 & 0 & 0_{1 \times(J-1)} & 0_{1 \times(K-1)} & 0 & 0_{1 \times(L-1)} \\
\Sigma_{b_{L}, a} & 0_{(L-1) \times 1} & \Sigma_{b_{L}, b_{J}^{\prime}} & \Sigma_{b_{L}, b_{K}^{\prime}} & 0_{(L-1) \times 1} & \Sigma_{b_{L}, b_{L}^{\prime}}
\end{array}\right]
$$

where σ_{a}^{2} is the residual variance and $\boldsymbol{\Sigma}$ is a partial covariance matrix. For example, $\boldsymbol{\Sigma}_{b_{K}, b_{J}^{\prime}}$ is a covariance matrix between education coefficients $\boldsymbol{b}_{\boldsymbol{J}}$ and age coefficients $\boldsymbol{b}_{\boldsymbol{K}} ; 0$ refers to a zero matrix.

For the modified GMC method, everything except the weighting matrix \boldsymbol{W}^{*} is the same as the averaging method. The weighting matrix needs to be rebuilt as follows:

$$
W^{*}=\left[\begin{array}{cccc}
1 & G_{1 \times J} & 0_{1 \times K} & G_{1 \times L} \\
0_{J \times 1} & N_{J \times J} & 0_{J \times K} & 0_{J \times L} \\
0_{K \times 1} & 0_{K \times J} & I_{K \times K} & 0_{J \times L} \\
0_{L \times 1} & 0_{L \times J} & 0_{L \times K} & N_{L \times L}
\end{array}\right]
$$

where $\boldsymbol{G}_{\mathbf{1 \times J}}$ refers to a $\mathbf{1} \times \boldsymbol{J}$ column vector of grand means for education variables and $G_{1 \times L}$ refers to a $1 \times L$ column vector of grand means for marriage variables. $N_{J \times J}$ denotes $I_{J \times J}-1_{J \times J} \cdot D_{J \times J}$ where $D_{J \times J}$ refers to a diagonal matrix converted from the column vector of the grand means of education.

The new coefficients for the modified GMC method, (\boldsymbol{B}^{*}) can be obtained by taking diagonal values of $\boldsymbol{W}^{*} \boldsymbol{B}$. The variance-covariance matrix of the new coefficients is computed as $\boldsymbol{\Sigma}_{\boldsymbol{b}^{*}}=\boldsymbol{W}^{*} \boldsymbol{\Sigma}_{\boldsymbol{B}^{0}} \boldsymbol{W}^{* \prime}$. The variance of any predicted value $\boldsymbol{X} \hat{\boldsymbol{B}}$ is estimated as $\boldsymbol{X} \boldsymbol{\Sigma}_{\hat{\boldsymbol{B}}} \boldsymbol{X}^{\prime}$. Likewise, the variance of $\overline{\boldsymbol{X}} \hat{B}^{*}$ can be estimated as $\overline{\boldsymbol{X}} \Sigma_{\hat{B}^{*}} \overline{\boldsymbol{X}}^{\prime}$.

Once the variance-covariance matrix of the coefficients of the modified GMC method is computed, the standard errors for the detailed decomposition can be obtained relatively easily. Using matrix notation, D1B in Equation 2 can be expressed as $\bar{X}_{B} \hat{B}_{D 1 B}^{*}$. The variance of $\overline{\boldsymbol{X}}_{\boldsymbol{B}} \hat{B}_{D 1 B}^{*}$ is therefore calculated by $\overline{\boldsymbol{X}} \boldsymbol{\Sigma}_{\hat{\boldsymbol{C}}^{*}} \overline{\boldsymbol{X}}$, where $\boldsymbol{\Sigma}_{\hat{C}^{*}}$ is an addition of the two variance-covariance matrices of coefficients, $\Sigma_{\hat{b}_{W}^{*}}+\Sigma_{\hat{b}_{B}^{*}}$. The variances of D2 are estimated in the same way. As we estimate the variances of the decomposed components, the t-tests of the estimated decomposition components can be conducted simply; for example, by $\boldsymbol{t}_{\boldsymbol{D 1 B}}=\frac{D 1 B}{\tilde{\sigma}_{D 1 B}}$. Note that here we assume the $\overline{\boldsymbol{X}}$'s to be fixed. if $\overline{\boldsymbol{X}}$'s are stochastic, the estimation of variances should include the variance of $\overline{\boldsymbol{X}}$ and the interaction effects (Lin 2007; Jann 2008).

References

Jann, Ben. 2008. "The BlinderOaxaca Decomposition for Linear Regression Models." The Stata Journal 8:453-479.

Lin, Eric S. 2007. "On the Standard Errors of Oaxaca-type Decompositions for Interindustry Gender Wage Differentials." Economics Bulletin 10:1-11.

Yun, Myeong-Su. 2008. "Identification Problem and Detailed Oaxaca Decomposition: A General Solution and Inference." Journal of Economic and Social Measurement 33:27-38.

